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Abstract
The question of importance of the common features in macroeconomy particularly in real business cycle studies is by now widely understood and manifests itself in numerous studies. On the other hand, in spite of the abundance of studies focusing on  developed economies, there has been very few works related to developing countries. This paper attempts to fill this gap, at least to some extent,  by using quarterly observations on consumption, investment and output in Turkey to investigate both the stylized facts and the common features. The methodology is based on the multivariate structural time series framework.  Empirical results indicate  that these aggregates do not have a  common cycle; however,  a common slope with smooth trend is not rejected indicating that the  series are linked with cointegration of type  CI(2,2).
____________________________________________________________________
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1. Introduction 

To conduct good fiscal and monetary policy, a clear understanding of the working of

the economy – and especially of the factors that drive the business cycle – is necessary. In recent decades, economists have focused mainly on understanding movements in aggregate output and on explaining the persistence of aggregate economic activity.

An indicator of comovement among non-stationary variables is cointegration. When a set of variables are cointegrated, they share some common stochastic trends that drive their long swings, and at least one linear combination of them exists which has no long swings, i.e. is stationary. Thus the common trend is a long run phenomenon. 


For already stationary series, an analogous property would be that a linear combination of autocorrelated variables that has less autocorrelation than any of the individual series (in the sense of having an autocorrelation function that decays to zero faster). For example, a linear combination of stationary but autocorrelated series could itself be white noise, in which case we say that the individual series share a common cycle.   
A vast amount of empirical macroeconomics literature have investigated the long run implications of the real business cycle models among which Neusser (1991), King et al. (1991) Kunst and Nuesser (1990) are some of the well known studies. However, an implication of neoclassical growth theory is that consumption, investment and output share not only a common stochastic trend component produced by a single technology shock to the production function, but a common cyclical component may also result (Mills, 2003). . 
Detection of common cycles in macroeconomic series has several important economic and statistical implications as pointed out by Hecq (2000): From the statistical point of view, common cycles, by introducing parsimony into modeling process via parameter reduction, may increase efficiency since redundant factors can be removed. Moreover this reduction process may also improve forecast accuracy. 
Regarding the economic point of view, several reasons may be advanced: First, economic theory often predicts and explains such comovements. It allows to test for short run elasticites from linear combinations which are unpredictable from the past (or have shorter memory) like rational expectations models, Okun’s law or heterogeneous consumer model. Moreover, the presence of a single common cycle between economic indicators of several countries signals to policy makers that economies have already converged in the short-run. 

Common cyclical movements in detrended economic variables have been so prevalent that they have acquired the status of “stylized facts”. Lucas (1977) states that the main regularities observed in cyclical fluctuations of economic time series are in their comovement. In empirical studies, common cycles have been shown to be a feature of a variety of macroeconomic data sets. For example, Campbell and Mankiw (1989) find a common cycle between consumption and income for most G-7 countries. Engle and Kozicki (1993) find common international cycles in GNP data for OECD countries. Using US data, Issler and Vahid (2001) found common cycles for macroeconomic aggregates, and Engle and Issler (1995) and Carlino and Sill (2001) found common cycles for sectoral and regional outputs, respectively. 
The typical framework used in such studies has been based on generally on the VAR structure: the number of common trends can be estimated by following standard procedures for testing for common trends, implying cointegration. Subsequently, conditional on the estimated cointegration rank, the number of common cycles may be selected either through the above-mentioned canonical correlation analysis or by directly incorporating, and subsequently testing, the restrictions into the VECM (Mills, 2003).  For instance, by extending the concept of cofeatures initially proposed by Engle and Kozicki (1993), Vahid and Engle (1993) set up a VAR framework that contained both common trends and cycles and proposed a test that is based on the canonical correlation approach of Tiao and Tsay (1985). Similarly, Issler and Vahid (2001) and Hecq (2000) investigated short run co-movements among output, consumption and investment.
An alternative approach in testing common trends or cycles or both was suggested by Harvey (1989) who proposed structural time series (STSM) or unobserved components models. Structural time series models decompose time series into unobservable components such as trend, seasonal and cycle. They also allow for the inclusion of exogenous and intervention variables. The trend, seasonal and cycle are normally stochastic; the corresponding deterministic components are special cases. In this respect they are based on a different conceptual framework than VAR modelling such that  testing for  unit roots and cointegration have less emphasis in this method. STSM offers a viable alternative to ARIMA or Box-Jenkins modelling such that in the former, unlike the latter in which everything is treated as black box and factors such as seasonality, trend are eliminated by differencing, these components are retained in the model. Moreover, STSM is very flexible: whenever a blip is found, one can always go back to the original model and make necessary modifications in the original specification (Durbin and Koopman, 2001). In this respect, this methodology comes in very handy in dealing with outliers and structural breaks by allowing intervention effects in addition to stochastic components.
Studies of comovements of Turkish macroeconomic aggregates and stylized facts have generally relied on filter-based, rather than model- based methodology à la Vahid and Engle (1993) type or Harvey’s STSM approach. Alper (1998) for instance, studied business cycle aspect in connection with capital flows and used Hodrick-Prescott filter for extracting trends and cycles. Aruoba (2001) studied stylized facts using Kydland Prescott filter. Saltoğlu et al (2003) have used MS-VAR for testing and dating business cycle turning points. Özcan (1994) used STSM within univariate framework and her study focused on industrial production and prices.
This study analyzes the dynamic properties and the stylized facts and common features of the Turkish macroeconomic aggregates, namely consumption investment and output data, within the framework of the multivariate STSM. In the next section the data and the multivariate structural time series methodology is presented. This will be followed by the estimation results and their interpretation. Section 4 contains a summary and discusses some policy implications.
2. Methodology
Multivariate STSM is a natural extension of the univariate structural time series, such that yt is now an Nx1 vector of observations which depend on vectors of unobserved components. Models of this kind are also referred to as Seemingly Unrelated Time Series Equations (SUTSE). The distinctive feature of a SUTSE model can be directly formulated in terms of latent variables bearing meaningful interpretation, such as trend, cycles, and so forth (Harvey and Koopman, 1997). The link across different series is though the correlations of the disturbances driving the components. The basic idea is that the series, more than being related by way of cause-effect relationships, are subject to the common environment so that, for instance, their transitory dynamics are all affected by the phase of the business cycle. A relevant property shared by all SUTSE models is the invariance under contemporaneous aggregation obtained by a linear combination of the component series. As a consequence, the univariate models for each series mirror the specification of the multivariate model.
For the problem under investigation, we aim at extracting the cyclical component from a set of N time series; this is achieved by the following model:
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where yt  is the Nx1 vector of series, which depends on unobserved components which are also vectors. The first term on the right hand side of equation (1) is the stochastic trend component 
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 which, in equation (2) is specified as a multivariate random walk with drift 
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 and innovations 
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  ~NID( 0, ∑η ). The multivariate cycle 
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 is generated by the first order autoregression (3) and represents a possible generalization of a univariate model for a cycle proposed by Harvey (1989) ; ρ is the damping factor, such that 0 ≤ ρ <1, and λc is the frequency in radians,  0 ≤ λc  ≤ π , so that  2π / λc  is the period of the cycle. The particularly simple structure of the  coefficient matrix in (3) and the assumption that ρ and λc are common to all the series is necessary for the model to posses the property of the invariance under contemporaneous aggregation. The irregular component is a multivariate white noise process: εt~NID( 0,∑ε ). The specification of the model is completed by the assumption that εt , 
[image: image8.wmf]t

h

, κt  , κt* are mutually uncorrelated  so that dynamics in the components can be ascribed to different casual sources. Innovations  κt* appear by construction hence does not bear any structural interpretation.
In a common factor model, some or all of the components are driven by disturbance vectors with less than N elements. Thus, for example, when ∑η has rank K η < N, the trend can be expressed in terms of k common trends and the series are cointegrated. The model then contains K common levels or common trends and may be written as 
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       ηt ~ NID( 0, Dη )            (5)             
where η+t is a K x 1 vector, Θ is a (N x K) matrix of standardized factor loadings, Dη is a diagonal matrix and µθ is a (N x 1) vector in which the first N – K elements are zeros and the last K elements are contained in a vector 
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. The standardized factor loading matrix contains ones in diagonal positions.
The formulation in (6) assumes that the variance matrix of the levels is non-null. Therefore, the level disturbance ηt is added to the slope equation. However, there may be cases whereby, there are common slopes with the variance matrix of the levels is null so that the estimated trends are relatively smooth. In this case we have:
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          ζt† ~ NID( 0,Dζ )    
where ∑ζ =ΘDζΘ´ and the first Kβ elements in μθt are zeros and the remainder are contained in a vector 
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. This latter are non-zero vectors containing (N-K)x1 elements and can be calculated as:
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where 
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 are partitioned components of load matrix based on Kβ number of common slopes. The 
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 are also suitably partitioned vectors incorporating estimates of the level states at the final sample point (t=T). The 
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 ,on the other hand, incorporate estimates of the states of the slopes at the final sample point.
As for common cycles, we say that yt   has S < N common cycles if the matrix 
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  has rank S, in which case we rewrite  
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 is an N x s matrix of loadings, and 
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 is a vector containing the common cycles admitting the representation (1). The second case is very important here since it is possible to extract an indicator which is the reference cycle.
Explanatory variables and interventions may be included in multivariate models as shown below:
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         (10)
where xt is a vector of explanatory variables and wt  is a K*x1 vector of interventions. 
The statistical treatment of unobserved component models is based on the state space form (SSF). Once a model has been put in SSF, the Kalman filter yields estimators of the components based on current and past observations
. Signal extraction refers to estimation of the components based on all the information in the sample. It is based on the smoothing recursions which run backwards from the last observation. Predictions are made by extending the Kalman filter forward. Root means square errors (Rmse) can be computed for all estimators and prediction or confidence intervals constructed.

The unknown variance parameters are estimated by constructing a likelihood function from the one-step ahead prediction errors, or innovations, produced by the Kalman filter. The likelihood function is maximized by an iterative procedure. The calculations can be done with STAMP© package of Koopman et al (2000)
. Once estimated the fit of the model can be checked using standard time series diagnostics such as tests for residual serial correlation. In addition, graphs of standardized innovations and auxiliary residuals, in conjunction with normality tests, can be used to detect data irregularities such as outliers, level changes and slope changes.
3. Data and estimation 
The series are all quarterly data, expressed in fixed 1987 prices, and obtained from the Central Bank of Turkey data dissemination server (http://www.tcmb.gov.tr).  The series in logarithmic form namely gross domestic product (output), final consumption expenditures and gross fixed capital formation (investment) are referred to as y, c and i respectively hereafter
. The period studied spans 1987:Q4 and 2004:Q4. The combined plots of series are shown in Figure 1. 

Insert Figure 1 here.

The c and y plots exhibit almost similar trending behavior and even the timing of the wiggles seem to coincide. With relatively sharper peaks and troughs, i is visibly quite different in terms of trend and cyclical behavior particularly after 1998. 
In empirical business cycle studies, the cyclical movements’ impact of financial crises and other unexpected shocks need to be insulated from the downturn of the cycle. This is particularly important in this study since anyone familiar with the characteristics of the last two decades of the Turkish economy will recall two financial crises severely affecting, in addition to the financial system, the real sector aggregates. Fortunately, STSM framework provides facilities to cope with such events thus allowing separation of the effects of the financial shocks from cyclical movements.
The starting model specification is set with stochastic level, stochastic slope, long cycle and irregular components and the results are given in Table 1 and Table 2.

Insert Table 1 - 2 here
The convergence is very strong and this is good news. It shows that the model specification is at least flawless. The iterations may look a bit high; however this is natural in multivariate models and generally tends to be high as the number of series increases.  Table 1 presents estimated variances of components and the q ratio. The latter is calculated as the component with the highest variance appearing in the denominator and the others in the numerator.  The level standard deviations in individual series are all zero. Table 2 reports estimated covariance matrix of disturbances of the components. Once again, the elements of level disturbance variance matrix are all zero. At a first glance, this might suggest the removal of this component; however we may want to change the level specification from stochastic to fixed and check the estimated state vectors beforehand.  The estimated state components indicate that the level component has significant t statistics; therefore they would rather remain in the model albeit as non-stochastic (fixed) component.  Now, the reformulated model has very smooth estimated trends for all series
. Moreover the slope disturbances are perfectly correlated and this suggests the system is CI (2, 2). The cycle period is 18.7098, i.e. approximately 4.677 years. The rho coefficient is 0.882539. Since the level component is now set as fixed, this may preclude further investigation toward finding a common stochastic trend specification via reduced rank restriction on the level disturbance.
Insert Table 3 here.

Figure 2 -3 here. 

The model, however, is far from being complete unless the accompanying diagnostic tests indicate otherwise. These are reported in Table 3. The normality tests and Q tests reject the null indicating nonnormality and the absence of serial correlation in the residuals. The former may be attributed to the unexpected shocks such as financial crises and the latter may point to the misspecified dynamics in the series. The residual plots of all the series-given in Figure 2- exhibit the downturns associated with the financial crises in 1994 and 2001. Therefore, two crisis dummies need to be incorporated in the model. In addition to ordinary residuals, auxiliary residuals can be used as well to detect structural breaks and outliers (Harvey and Koopman, 1992). These are nothing but the standardized smoothed estimates of the disturbances. They are shown in Figure 3. Unlike standardized residuals, the plots of auxiliary residuals indicate sharp falls associated with different dates with separate impacts on each series. The first event occurring in the first quarter of 1988 can be linked to the crash in the banking system resulting from the shocks on the interest rate caused by the currency substitution while the drop in the third quarter of 1990 has resulted from the pre-Gulf war effect such as the unexpected termination of border trade with Iraq.
Table 4 reports the estimated intervention dummies corresponding to the above-mentioned events. Note that not all dummies appear in each equation except the two crisis dummies identified with the two major crises. The 2001 crisis, with a magnitude much stronger a long lasting than the other shocks, is better represented by a level dummy as neither the slope dummy nor the irregular dummy turned out to be significant.
Insert Table 4 here

Smoothing refers to the estimation of the state and the disturbance vectors using information in the whole sample rather than just past data (Harvey and Koopman, 2000). This is an important feature because it is the basis for signal extraction, detrending, and seasonal adjustment (where necessary) and diagnostic checking presented above. Table 5 reports final estimated values of the components via smoothing. Note that smoothing can be executed for every component specified in the model and only those which are of interest to us are shown here. Except for the slope in the investment equation, all the final values of the level and slope components are significant

Insert Table 5 here

 Next step concerns placing restrictions on the variance matrices of the components to test for common features. Since the level has already been found to be nonstochastic, we are only able to test common slopes and common cycles
. This is handled by reducing the rank of the respective component’s matrices. To test for common cycle, the model is re-estimated with rank restriction for cycle disturbance matrix set equal to 2. The likelihood ratio test is highly significant thus rejects the common cycle hypothesis with χ2(1) =6.78 [0.0092]
. Since consumption and output have growth rates that are very close, we may wish to test for common slopes. Since the log likelihood of the restricted and unrestricted model are very close (734.62 versus 734.46), the likelihood ratio test this time does not reject the rank restriction on slope disturbances. The restricted model takes the following form specified in (8) and the loading, constant and the diagonal matrices are given in Table 5:

Insert Table 6 here
From the fitted model in the last row, we can establish relationships between the trends of the series. For example, considering the last row of the matrix, we find:
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 .This result suggests that, the output trend for example, is the multiple of the consumption and investment trends plus some deterministic terms. We see that trend movements in output are largely driven by deterministic trend component. In other words, it is only the stochastic movements in the trends which are common. This suggests that stochastic part of the output growth is less than that of the consumption and much less than that of the investment. Figure 4 illustrates the relation between slope components of the series. The investment maintains a growth rate well above consumption and output until the second quarter of 1997, turns negative in the fourth quarter of the same year, and sustains a very sharp fall until the second financial crisis in 2001. This may be attributable to the sensitivity of this variable to the contagion effects of the Asian and Russian crisis in these years. 
Insert Figure 4 here


The plots of the smoothed cycle components are given in Figure 5. The much sharper investment cycle with the highest amplitude is clearly visible here. Although the cycles do not share a common driving component, they are highly correlated. In fact, the correlations between c and i is 0.95, as against 0.94 between c and y, whereas it is 0.90 between i and y. Despite high correlation between cycle components, we fail to establish a lead-lag type of relationship as confirmed by the insignificant Granger causality test statistics among pairs
. 

Insert Figure 5 here

Finally, the diagnostic tests statistics of the final model with one common slope, smooth trend and intervention dummies are shown in Table 7. All tests are now satisfactory.
Insert Table 7 here

4. Summary and Conclusion
In this paper a multivariate structural time series method was utilized to uncover the stylized facts of three most important real sector aggregates in Turkey, namely consumption, investment, and output. The multivariate specification based on fixed level, stochastic slope and long cycle provides a good fit. The effects of 1994 and 2001 financial crises as well as other shocks are handled with the appropriate dummies. The investment component has the highest cyclical amplitude and thus is consistent with the findings of similar studies. The tests fail to detect common cycle; however, a common slope with smooth trend is not rejected. This indicates that stochastic movements in the trends of the consumption, investment and output are linked by a common slope. We conclude that, in spite of the long run equilibrium among the series identified with a cointegration relation of type CI (2, 2); the cycles do not converge due to the idiosyncratic cyclical behavior of the investment series. Thus, countercyclical policies targeting particularly investment will have a different impact on consumption and output and vice-versa.
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Table 1.  Estimated standard deviations of disturbances.

______________________________________________________________________

Component  C         (q-ratio)      I   (q-ratio)        Y   (q-ratio)   

_______________________________________________________________________

	Irr        0.012159  (0.5803)  0.020231 (0.3300)    0.013760 (0.7067) 
Lvl        0.00000   (0.0000)  0.00000  (0.0000)     0.00000 (0.0000)  
Slp        0.0009056 (0.0432)  0.003127 (0.0510)   0.0004875 (0.0250)  

Cy3        0.020953  (1.0000)  0.061298 (1.0000)    0.019472 (1.0000) 


_______________________________________________________________________

Irr = irregular, Lvl = level, Slp = slope, Cyc3 = cycle with periodicity up to 20.

Table 2. Variance matrices for the components

______________________________________________________________________
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______________________________________________________________________

Ση = level, Σζ = slope, Σε = irregular, Σκ = cycle. 
Table 3.  Initial Model Summary Statistics
                   C            I          Y

___________________________________________________

	 Std.Error      0.026932    0.073598    0.026549

 Normality        15.534      11.977      15.682

 H( 23)           1.3977      1.6875      1.1492

 r( 1)           0.18096    0.094673    0.093685

 r(11)          -0.24073    -0.16109    -0.17436

 DW               1.6329      1.7379      1.7784

 Q(11, 6)         15.985      8.8984      13.805

 Rd^2            0.23676     0.16182     0.25709


___________________________________________________
H = heteroscedasticity statistic;  r(1) and r(11) = serial correlation coefficients
at lag 1 and 11; DW =Durbin-Watson; Q = Box-Ljung , Rd^2 = coefficient of 

determination based on trend movements.
Table 4. Intervention effects

_________________________________________________________________

Consumption
Variable      Coefficient      R.m.s.e.       t-value
	Irr 1994. 2     -0.084498      0.018045       -4.6828  [ 0.0000]

Lvl 2001. 1     -0.055924      0.018866       -2.9644  [ 0.0041]


Investment

	Irr 1988. 1      -0.14698      0.037548       -3.9144  [ 0.0002]

Irr 1994. 2      -0.11503      0.047124       -2.4409  [ 0.0172]

Lvl 2001. 1      -0.11673      0.060241       -1.9377  [ 0.0567]


Output
	Irr 1990. 3     -0.046278     0.0095133       -4.8645  [ 0.0000]

Irr 1994. 2     -0.084993      0.016866       -5.0392  [ 0.0000]

Lvl 2001. 1     -0.059172      0.017789       -3.3264  [ 0.0014]


__________________________________________________________________

R.m.s.e is the root mean square error, the numbers in brackets are p values.

Table 5.  Final Estimated  States ______________________________________________________________________
Consumption
	Variable      Coefficient      R.m.s.e.       t-value

Lvl                9.9357      0.017644        563.11  [ 0.0000]

Slp             0.0053375     0.0019978        2.6717  [ 0.0094]


Investment

	Lvl                8.7515      0.060845        143.83  [ 0.0000]

Slp            -0.0041903     0.0080026      -0.52361  [ 0.6022]


Output
	Lvl                10.400      0.013742         756.8  [ 0.0000]

Slp             0.0086647    0.00063490        13.647  [ 0.0000]


______________________________________________________________________
Table 6.  Common slope restrictions

____________________________________________________________________
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____________________________________________________________________

Upper row contains  the slope loading matrix and partitioned sub-matrices. Second row contains final estimated states of levels and slopes taken from Table 5 (i;e, the final estimated state of investment is 8.75 and slope is -0.004). The last row shows fitted model.

Table 7.  Final Model Summary Statistics
                   C            I          Y

___________________________________________________               

	 Std.Error        0.0224      0.0645      0.0210
 Normality        1.3413      9.4991      3.1331

 H( 23)           1.1522      2.3393      1.1303

 r( 1)            0.1285      0.1514      0.0361
 r(10)           -0.0596     -0.0601     -0.0595
 DW               1.7358      1.6002      1.8658

 Q(10, 6)         7.2096      5.5071      10.749

 Rd^2             0.4702      0.3518      0.5318


____________________________________________________
H = heteroscedasticity statistic;  r(1) and r(11) = serial correlation coefficients
at lag 1 and 11; DW =Durbin-Watson; Q = Box-Ljung , Rd^2 = coefficient of 

determination based on trend movements.
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        Figure 1. Plots of the series
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Figure 2. Residuals plots and correlogram.
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Figure 3. Auxiliary residuals plots and density histograms
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Figure 4. Plots of slope components
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Figure 5. Smoothed cycle component plots 
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† Department of economics, Eastern Mediterranean University, Mağusa, Mersin 10, Turkey.


 Tel: +90 392 6302734, Fax: +90 392 365 10 17, email: cem.payasli@emu.edu.tr.


� Details of the Kalman filter, not given here, can be found in Harvey (1989) and Durbin and Koopman (2001).


� Another package by the same authors is Ssfpack by  Koopman et.al (1999). This one has programmable interface.


� The series are not deseasonalized as this will be handled by the related component of the model..


� In this case it is defined as integrated random walk corresponding to an I (2) process.


� Common levels are a special case of common trends as it arises when the trend is just a multivariate random walk. Smooth trends with common slopes, implying a null levels variance matrix and a reduced rank slope variance matrix, is another special case.


� Not only the reduced rank restriction is rejected for cycle disturbances but also weak convergence has resulted at the end of 100 iterations.


� Not shown here but available on request.
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